Healing Following Simple Gingivectomy. A Tritiated Thymidine Radioautographic Study. I. Epithelialization

PREVIOUS STUDIES in experimental animals and humans have established a generally accepted pattern of healing following simple gingivectomy. However, much is yet unknown concerning the tissue migration and synthesis which lead to restoration of form and function following surgical removal of gingival tissues. Knowledge on details regarding timing, duration and order of cell proliferation also is incomplete. The purpose of the present investigation was to make a sequential study of cell proliferation and dynamics of healing following simple gingivectomy through a combination of histologic and radioautographic techniques.

Administration of tritiated thymidine to experimental animals provides a radioautographic method for demonstration of cellular synthesis of DNA in preparation for mitosis. Thymidine is incorporated into cells during their premitotic S-Phase and when tagged with tritium, demonstrates in radioautographs the cells that were synthesizing DNA at the time of intravenous administration of the isotope. This technique combined with conventional histologic methods provides an opportunity to study mitotic activity and migration of cells with greater accuracy than reported in the previous studies of healing following gingivectomy. This paper will be concerned mainly with regeneration of the epithelium, while the findings related to the connective tissues will be reported in a subsequent paper.

MATERIALS AND METHODS

Clinical Procedures. Three healthy adult male rhesus monkeys (Macaca Mulatta), at least 5 years old, and weighing 11.8, 9.1, and 7.3 kgs. respectively, were selected. Adult males were used to avoid fluctuation in epidermal mitotic rate reported to occur in females related to the estrus cycle.

The animals had varying amounts of supra and subgingival calculus and moderately severe marginal gingivitis with crevice depths of 2 to 4 mm. All teeth were scaled 2 weeks prior to the experimental procedures in order to remove most of the calculus and thereby establish as standardized presurgical conditions as possible.

Simple gingivectomies were performed around 2½ posterior teeth at predetermined time intervals. The marginal gingiva was excised to the bottom of the epithelial attachment, as located by a periodontal probe (U. of Mich. #0), and with a regular beveled incision. The resultant wounds were about 3 mm wide on both the buccal and lingual sides of the teeth. Following the gingivectomy, the teeth were resected for removal of residual calculus and the exposed tooth surfaces were planed with curettes. No surgical dressing was used. Control areas were left untreated in all three monkeys.

The gingivectomies were performed at 35, 21, 14, 9, 7, 5, 3 days and at 49, 37, 25, 13, 9, 5, and 2 hours prior to sacrifice of the animals. One hour prior to sacrifice, each animal was injected intravenously with 1 microcurie of tritiated thymidine.

Laboratory Procedures. Autopsy of the animals were studied from which might have indicated healing. None of these disorders were found.

The jaws with the soft tissue were fixed in 10% buffered formalin for an average of 6 months. Segments buccal-lingual, 6 x 10 x 10 mm and diamond disks, 2 x 10 x 10 mm, with EDTA adjusted to pH 7 with sodium hydroxide. The tissue was trimmed, and 15 - 20 mm. The serial sections were cut in the long axis with a diamond whetstone, 12 microns. The sections were stained with toluidine blue.
Tritiated epithelialization

L.D.S., PH.D., AND

S AND METHODS

Males. Three healthy adult
keys (Macaca mulatta),
and weighing 11.8,
respectively, were se-
lected in order to avoid
intraoral mitotic rate re-
on females related to the

ad varying amounts of
ival calculus and modera-
tinal gingivitis with crevice
m. All teeth were sealed
the experimental proce-
remove most of the cal-
establish as standardized
ns as possible.

tories were performed on
realtionship. The marginal gingiva
bottom of the epithelial
covered by a periodontal
n. #0), and with a regula-
The resultant wounds
both on the buccal and
of the teeth. Following
the teeth were rescaled
idual calculus and the
aces were placed with
al dressing was used.
le left untreated in all
ies were performed at
days and at 49, 37, 25,
n prior to sacrifice of
prior to sacrifice, in-
jected intravenously of
tritiated thymidine.*

Corporation, Boston, Massa-

bedded in paraffin and sectioned at 8

microns.

Radioautographs of jaw specimens were
prepared by the dipping technique pre-
viously reported1 using NTB-3 emulsion.*
After 4 weeks of exposure, the radioaut-
ographs were developed, fixed, the sections
stained with Ehrlich's acid hematoxylin and
mounted with Permount. Several sections
from each block were stained with hema-
toxylin and eosin without adding film for
histologic study.

Counting Procedures. Since initial altera-
tion of labeling11 and changes in the num-
ber of mitoses12,13 in epithelium occur
within 1.5 to 2.0 mm from the edge of a
surgical incision, counts were made of an
area of attached gingival epithelium extend-
ing 1.7 mm from the wound margin. For
convenience, this area was divided into 3
zones designated as zones A, B, and C as
in Fig. 1, each 0.57 mm in length. Counts
were also made of corresponding zones in
untreated specimens.

Radioactive indices were determined by
counting at 430x the number of labeled
and unlabeled cells in each epithelial area
according to the method of Menier and
Leblond.15 The ratio of the number of
labeled cells to the total cell population
was expressed in percentage as the radio-
activity index.

FINDINGS

Prescribed Control Areas. The original
gingivae subsided markedly following the
presurgical scaling. At the time of sacri-
fice, the gingivae appeared fairly normal in
color, form and density, and exhibited little
or no bleeding upon routine probing of the
unoperated control areas. Histologic sec-
cions revealed normal keratinized gingival
surface epithelium, and a thin well adapted
epithelial attachment or cuff ending at or
slightly apical to the cemento-enamel junc-
tion. Some lymphocytes and plasma cells

were present adjacent to the sulcus epithelium.

Radioautographs demonstrated labeled cells in the basal and lower spinous layer of the gingival epithelium, and occasionally in the connective tissues of the lamina propria. The radioactive indices for control areas from the three monkeys were 0.90%, 1.37% and 1.46%, which provided an average control index of 1.32%.

EXPERIMENTAL FINDINGS

Two hours following gingivectomy the histologic sections revealed that the surface of the incision was relatively free of debris and was covered by a thin fibrinous exudate in which were incorporated polymorphonuclear leukocytes. An acute inflammatory reaction, characterized by dilated vessels and emigration of leukocytes, had already been established in the connective tissues of the wound margin. The connective tissues beneath the incision, for a depth of approximately 0.2 mm, exhibited disrupted collagen bundles and few erythrocytes.

Radioautographs over these sections showed labeled cells in the basal layer of the attached gingival epithelium at the wound margin. This labeling had taken place 1 hour following the gingivectomy. In the monkey having a control radioactive index of 1.37% the 1 hour radioactive index of the epithelium at the wound margin was 1.92%. Connective tissue labeling was also comparable to that observed in control sections.

Five hours following simple gingivectomy, a well defined clot apparently had sealed the incision. The acute inflammatory reaction observed at 1 hour had progressed and many polymorphonuclear leukocytes were present in the connective tissues underlying the incision.

In the epithelium immediately at the wound margin and extending approximately 0.7 mm along the adjacent attached gingiva, many of the cells of the spinous layer were enlarged, pale staining, and exhibited indistinct intercellular bridges 5 hours following gingivectomy. Interspersed between these swollen, hazy cells were chromatin masses from cells ruptured as a result of the incision (Fig. 2). The basal cell layer of the epithelium at the wound margin was normal in appearance, and stained deeply in contrast to the pale staining spinous layer. The 4 hours radioactivity index had not changed significantly from the control index.

Nine hours following gingivectomy, a band of basophilic cells, 5 to 6 cells in thickness, was present in the basal portion of the epithelium at the wound margin, and several of the basophilic cells in this region were labeled (Fig. 2). By 13 hours, migration was definitely established as the basophilic cells extended from the spinous and basal cell layers of the epithelium beneath the clot and the necrotic tissue layer, on top of the underlying normal connective tissue (Fig. 2).

Radioactivity indices showed a slight tendency to increase above the radioactivity index of control areas during the first 12 hours following gingivectomy, but the increase was not statistically significant (Fig. 3). When individual radioactivity indices of the areas outlined in Fig. 1 were compared at the various time periods following gingivectomy, no definite pattern of wave-like premitotic activity along the epithelium at the wound margin could be discerned (Fig. 2).

Twenty-five hours following gingivectomy, the cells of the epithelium at the wound margin exhibited layering and staining typical of stratified squamous epithelium (Fig. 4). Migration from the basal and deeper spinous layers had advanced approximately 0.4 mm across the wound. The connective tissues, which in shorter term specimens had appeared altered at the wound surface, were now heavily infiltrated with polymorphonuclear leukocytes.
the adjacent attached
of the spinous
basal layer, and
epidermal bridges 5
to 6 cells in
the region
in this area.

Interspersed
n. hazy cells were
4 cells in this area.

The basal
layer at the wound
margin, and

N. hazy cells were
4 cells in this area.

By 13 hours, migra-
ted as the base-
tion the spinous and

epithelium beneath
lenticular layer, on top-

ual connective tissue

s showed a slight
the radioactiv-
tes, during the first
of the above
were as time periods fol-
described in Fig. 1.
were as time periods fol-

following gingi-
epithelium at the
layering and stain-
epithelium, in the
basal
across the wound.

which in shorter
eared altered at the
the now heavily infil-
nuclear leukocytes.

Fig. 2. Epithelium of attached gingiva at the wound margin divided into areas (A, B, C) for counting as de-
dined in Fig. 1. (Magnification x100). Top figure represents 4 hour autoradiograph. (Five hours after gingi-
vectomy. N. Nuclei, E. Epithelium, W. Wound.) (2). Middle figure represents 4 hour autoradiograph. (Five hours following gingivectomy. Basophilic cells, rounded at the basal layer exhibiting

Migration of epithelial cells indicated at wound margin.

EPITHELIALIZATION AFTER GINGIVECTOMY

Page 39
Epithelial migration appeared to be occurring beneath this altered layer, with the epithelial cells moving as a sheet of loosely attached cells which wedged out into the connective tissue surface of the wound (Fig. 4).

Synthesis of DNA in the epithelium at the wound margin was greatly increased 24 hours following gingivectomy. The 24-hour radioactivity index was more than 12 times that of the control index and was the highest observed during the experimental period (Figs. 3, 4). This increase in DNA synthesis was limited to the basal 1/2 and deeper spinous layers of the attached gingival epithelium within 2 mm of the wound margin (Fig. 4A). The number of labeled cells in the attached gingival epithelium at greater distances from the wound margin (Fig. 4A) was similar to the number observed in sections from control areas.

In several sections a few cells of the epithelial attachment had inadvertently been left during gingivectomy (Fig. 5). Many of these cells were labeled at 24 hours and had migrated towards the wound from the tooth surface. They appeared at the junction of the band of polymorphonuclear infiltrate and the underlying connective tissue.

Thirty-six hours following gingivectomy, a substantial decrease was noted in the synthesis of DNA by epithelial cells of the wound margin. Although the 36-hour radioactivity index was relatively high when compared to the control index of 1.32%, it had decreased from the high index of 16.88% at 24 hours to 7.17% in the 12 hour period. From 36 hours to 5 days following gingivectomy, the radioactivity index at the wound margin remained relatively constant with indices of 7.17%, 6.42%, 6.77% and 5.91% being recorded at 36 hours, 48 hours, 72 hours, and 5 days following gingivectomy (Fig. 3).

Forty-eight hours following gingivectomy most synthesis of DNA was localized to epithelial cells immediately at the wound margin. Several labeled cells also were present in the basal layer of the migrating epithelium (Fig. 6A). Near the advancing tip of the migrating epithelial wedge the connective tissue contained many polymorphonuclear leukocytes and fibroblasts loosely arranged in a honeycomb fibrin matrix. The connective tissue at the tip of the migrating epithelial wedge appeared to be more dense than the surrounding tissue but definite collagen bundles could not be seen (Fig. 6B). As the epithelial cells migrated, the connective tissue immediately beneath the new epithelium appeared to organize into distinct collagen bundles which abutted onto the basal layer of the migrated epithelium or the basement membrane.

From the 2nd to the 5th postoperative days the epithelium migrated slowly toward the tooth surface, reaching the vicinity of the tooth by the 5th day (Fig. 7). At the original wound margin the epithelium was stratified and several rete pegs were present. The new epithelium covering the wound was several cell layers thick and was not keratinized. Labeled cells were present in the basal layer along the length of the new epithelium. The surface level of the newly epithelialized area closely approximated that of the initial incision.

Between the 5th and 7th days an upgrowth of the connective tissue of the wound occurred, creating a sulcus along the surface of the tooth. The epithelium migrated apically as the tooth surfaces were to reform a gingival...
The newly formed epithelium migrated apically as a thin layer between the tooth surfaces and the connective tissue to reform a gingival sulcus.

Epithelial thickening, keratinization, and rete peg formation differed widely from section to section from the 7th to the 14th day (Fig. 8 A, B, C). It appeared, however, that keratinization was definitely established on the surface of the newly formed marginal gingiva by the 14th day. Radioactivity indices declined at the wound margin to 2.51%, 3.54%, and 2.29% at 7, 9, and 14 days post- gingivectomy, indicating that the demand for cells for regeneration from the original wound margin was ended. In areas where epithelialization was not complete, such as in the newly formed sulcus and in interproximal areas, the migrating epithelium exhibited numerous labeled cells con-
centrated along the basal layer immediately at the migrating tip. The radioactivity indices of these areas at 9 days following wounding averaged 18.51%. Therefore, after five days following gingivectomy new cells for migration were being produced at the border of the migrating epithelial wedge and not at the original wound margin.

Twenty-one days following gingivectomy the outer surface of the marginal gingiva was normal in appearance (Fig. 9). However, the surface of the gingival sulcus was not completely epithelialized in many sections. Unepithelialized areas as well as elongated epithelial pegs containing many labeled cells were present near the base of the sulcus, and inflammation was still present in the adjacent connective tissues. The radioactivity index of the attached gingiva was 2.53%, similar to the 7, 9, and 14 day indices.

By 35 days following gingivectomy the epithelium of the gingival sulcus was well organized as a thin layer closely adapted to the tooth surface (Fig. 10). Plasma cells and lymphocytes were present in the connective tissue adjacent to the gingival sulcus at the level of the epithelial attachment. With the exception of its more apical location, the epithelial attachment of the 35 day specimen was 1.53% which is similar to the control index of 1.32%.

DISCUSSION

The general pattern of epithelialization observed during the present investigation was in accord with previous reports. The epithelium migrated and regenerated from the wound margin to the tooth, a distance of approximately 3 mm in 5 to 6 days at a rate of approximately 0.6 mm per day.

However, several previous reports of gingival healing.

Gelfand in a study of the population of cells in a patient's gingiva, described the...
rate of approximately 0.5 mm per day. An upgrowth of the connective tissue of the wound then occurred, creating a sulcus along the tooth surface which subsequently became epithelialized and established a new epithelial attachment. By 35 days the marginal gingiva was completely regenerated and indistinguishable from that of control sections.

However, several findings differed from previous reports of similar studies of gingival healing.

Gelfant in a study of healing of the rat ear, described the presence of a unique population of cells held in G-2 phase of mitosis for a long period of time, apparently able to rapidly undergo mitosis when a need, such as injury, arises. Observations of radioautographs and hematoxylin and eosin stained slides at early hours following injury in the present study failed to reveal such a cell population rapidly undergoing mitosis. This does not preclude the existence of such a population, however, in that our first radioautographic observation periods were 2 and 5 hours following gingivectomy and rapid mitotic activity could possibly have occurred unobserved.

Migration of epithelial cells from the wound margin of monkey gingiva was an early phenomenon occurring well in advance of the increased synthesis of DNA by epithelial cells at the wound margin.
The high rate of synthesis of DNA in approximately 2 mm of epithelium at the wound margin at 24 hours following injury agrees with the increased mitosis during the 2nd day which has been observed in other studies.16, 18

McHugh and Parson,20 using fluorescence microscopy, observed in the healing gingiva of dogs, the presence of a peg or "factory" or epithelium which extended into the connective tissue at the wound margin and provided cells for migration and wound closure. This peg was present from the 2nd or 4th day to the 9th or 10th day following wounding. The authors state: "In examining the epithelial cells overlying the granulation tissue in early stages it is seen that the epithelial cells on the surface are younger than those underneath. From this it seems reasonable to assume that division of the epithelial cells covering the lesion does not occur in the early stages and that the cells originate from the 'peg' formation and slide out over the surface of the cells already there."

"The production of epithelial cells by the 'peg' appears to be the main source of cells for the healing lesions up to about the 9th or 10th day after production of the lesion."20

The presence of such a "peg" at the wound margin, producing cells in sufficient quantity to satisfy migration, would be obvious in a tritiated thymidine study in that a "peg" containing many cells synthesizing DNA in preparation for mitosis should be easily demonstrated. However, in the present investigation such a "peg" did not exist.

It appears that cells for initial migration from the wound margin were provided for by increased mitosis in the epithelium within 2 mm of the wound edge. However, after 2 to 3 days, as stratification of the migrating epithelium at the original wound margin occurred, cells necessary for migration were produced by the basal cells of the migrating epithelial wedge as well as at the wound margin. The decrease in radioactivity indices at the wound margin from 24 hours to 9 days tends to substantiate this concept.

Although the epithelial migration and regeneration starts at the margin of the wound, and could possibly be attributed as a result of the injurious epithelium, the completion of the epithelial layering in the new epithelial attachment itself and not involving any other tissues is the gingival sulcus at the gum (toward top of picture). (Magnification x150.)

The completion of the epithelial attachment, establishment of a new epithelial seal to the tooth at the gingival sulcus, epithelialization and disturbing in the presence of bacterial plaque and foodstuff on the tooth, the formation of the new attachment may not complete an adequate epithelial seal. Completion of healing also requires the establishment of connective tissue involvement. Free gingiva adapting the free gingiva to the tooth, thus establishing a physiologic gingival - intact epithelial attachment essential for complete heal-
The high rate of synthesis of DNA in approximately 2 mm of epithelium at the wound margin in 24 hours following injury agrees with the increased mitosis during the 2nd day which has been observed in other studies.

McHugh and Pearson, using fluorescence microscopy, observed in the healing gingiva of dogs, the presence of a peg or "factory" or epithelium which extended into the connective tissue at the wound margin and provided cells for migration and wound closure. This peg was present from the 2nd or 4th day to the 9th or 10th day following wounding. The authors state: "In examining the epithelial cells overlying the granulation tissue in early stages it is seen that the epithelial cells on the surface are younger than those underneath. From this it seems reasonable to assume that division of the epithelial cells covering the lesion does not occur in the early stages and that the cells originate from the 'peg' formation and slide out over the surface of the cells already there."

"The production of epithelial cells by the 'peg' appears to be the main source of cells for the healing lesion up to about the 9th or 10th day after production of the lesion."

The presence of such a "peg" at the wound margin, producing cells in sufficient quantity to satisfy migration, would be obvious in a tritiated thymidine study in that a "peg" containing many cells synthesizing DNA in preparation for mitosis should be easily demonstrated. However, in the present investigation such a "peg" did not exist.

It appears that cells for initial migration from the wound margin were provided for by increased mitosis in the epithelium within 2 mm of the wound edge. However, after 2 to 3 days, as stratification of the migrating epithelium at the original wound margin occurred, cells necessary for migration were produced by the basal cells of the migrating epithelial wedge as well as at the wound margin. The decrease in radioactivity indices at the wound margin from 24 hours to 9 days tends to substantiate this concept.

Although the epithelial migration and regeneration starts at the margin of the wound, and could possibly list as a result of the injury epithelium, the completion of mitosis with mitosis in the far from the wound margin epithelium at the original had settled down to the DNA synthesis, thus ind. stimulus for epithelial re. come either from within to the exposed or incon. connective tissues.

The completion of the epithelial attachment of the gingivectomy wound establishment of a new attachment to the tooth at the gingival sulcus. Epithelialization disturbed in the present tion and if bacterial plaque gained foothold on the tooth the formation of the new there may never be a complete adequate epithelial seal. Completion of healing establishment of collagenous free gingiva adapting the free to the tooth, thus establish ing a physiologic gingival impact epithelial attachment essential for complete healing.

Fig. 9. Marginal gingiva and follicular epithelium 21 days following gingivectomy. The top portion of the photomicrograph is the normal part of the alveolar mucosa and the halm portion is the marginal gingiva exhibiting lamina and a portion of the sulcus, (Magnification 125x.)

Fig. 10. Marginal gingiva 30 days following gingivectomy. Epithelial attachment well-adapted to the outer surface. Some lymphocytes and plasma cells are present under the sulcus epithelium. (Magnification 87x.)

Fig. 11. Epithelial attachment demonstrated to be attached to the tooth created during healing in the new epithelial tissue and formation of the gingival sulcus at the margin of the gingival tissue at the top of this figure. (Magnification 25x.)
al cells covering the lesion in the early stages and from the "peg" formation over the surface of the epithelial cells by the main source of cells up to about the 9th or 10th day of the lesion. So such a "peg" at the wound margin, would be obvious in study in that many cells synthesizing for mitosis should be present. However, in the pressure at the wound did not exist.

For initial migration was provided for the epithelium within 7 to 10 days. However, after 2-3 days of the migrating margin for migration were cells of the migrating all at the wound in radioactivity in from 24 hours to initiate this concept.

Migration and repair of the margin of the wound, and could possibly have been stimulated as a result of the injury to the excised epithelium, the completion of healing occurred with mitosis in the new epithelium far from the wound margin and after the epithelium at the original wounded margin had settled down to the control level of DNA synthesis, thus indicating that the stimulus for epithelial regeneration must come either from within the epithelium or from the exposed or incompletely covered connective tissues.

The completion of the epithelial healing of the gingivectomy wound is dependent on establishment of a new epithelial seal or attachment to the tooth at the bottom of the gingival sulcus. Epithelialization is delayed and disturbed in the presence of inflammation and if bacterial plaques are gained foothold on the tooth surface during the formation of the new gingival crevice there may never be complete healing with an adequate epithelial seal or attachment. Completion of healing also is dependent on establishment of collagenous fibers in the free gingiva adapting the free gingiva closely to the tooth, thus establishing and maintaining a physiologic gingival crevice with an intact epithelial attachment. It is therefore essential for complete healing of a gingivectomy wound that the tooth surface and the crevicular area are kept as clean as possible during the healing period in which this instance was complete in 35 days but was incomplete in 21 days.

It is of great clinical significance that the surface of the gingiva healed to normal appearance several weeks before the crevicular healing was completed. Thus from the standpoint of periodontal health, the most crucial period of healing is after the gingival surface has healed and even keratinized. If the results of this study can be applied to humans, these results should serve to emphasize the need for very rigidly supervised periodontal care the first few weeks after removal of the post-surgical dressing in gingivectomy patients since inflammation is apt to occur during this critical period.

Several of the teeth had notches or notches as a result of the gingivectomy, as previously reported by Ramfjord and Croft in humans. Although only such an area had been covered by a normal epithelial attachment in the 35 days specimen (Fig. 11), it appears that such surface irregularities may be hazards for bacterial and calculus retention if the epithelial seal in this area should be lost at a future date or if the neck is in an area not included in the epithelial seal. A normal epithelial seal or attachment is characterized by very minimal mitotic activity and no underlying inflammation. However, slight inflammation and some mitotic activity is always present at the junction between crevicular epithelium and the epithelial attachment.

SUMMARY

Sequential healing of simple gingivectomy wounds was studied in three monkeys with histologic and radioautographic techniques. The initial response was necrosis at the wound margin and acute inflammation. Migration and increased synthesis of DNA in epithelial cells started between 12 and 24 hours after the surgery, and reached a peak activity at the border of the wound between 24 and 36 hours after the excision. The migrating epithelial cells wedged themselves between the "poly-band" and the healing.